数学建模讲义

统计模型

——孕妇吸烟与胎儿健康

博雅教育学院

孕妇吸烟与胎儿健康

吸烟有害健康! 孕妇吸烟是否会伤害到腹中的胎儿?

对于新生儿体重,吸烟比妇女怀孕前身高、体重、受孕历史等因素的影响更为显著——美国公共卫生总署警告

美国儿童保健和发展项目(CHDS)提供的数据(1236个出生后至少存活28天男性单胞胎新生儿体重及其母亲的资料)

1.新生儿体重(oz)	120	113	128	123	108	•••
2.孕妇怀孕期(天)	284	282	279	999	282	•••
3.新生儿胎次(1~第1胎,0~非第1胎)	1	0	1	0	1	• • •
4.孕妇怀孕时年龄	27	33	28	36	23	•••
5.孕妇怀孕前身高(in)	62	64	64	69	67	•••
6.孕妇怀孕前体重(lb)	100	135	115	190	125	
7.孕妇吸烟状况(1~吸烟,0~不吸烟)	0	0	1	1	1	

研究目的

利用CHDS的数据建立新生儿体重与孕妇怀孕期、吸烟状况等因素的数学模型,定量地讨论:

- 对于新生儿体重来说,孕妇吸烟是否是比孕妇 年龄、身高、体重等更为显著的决定因素;
- 孕妇吸烟是否会使早产率增加,怀孕期长短对 新生儿体重有影响吗;
- 对每个年龄段来说,孕妇吸烟对新生儿体重和 早产率的影响是怎样的。

问题背景及分析

美国公共卫生总署的警告容易受到人们的质疑: 按照是否吸烟划分人群所做的研究,只能依赖于 观测数据,而无法做人为的实验,很难确定新生 儿体重的差别是因为吸烟,还是其它因素(如怀孕 期长短、吸烟孕妇多是体重较轻的年青人等).

"孕妇吸烟可能导致胎儿受损、早产及新生儿低体重"的警告不如"吸烟导致肺癌"来得强,是由于对孕妇吸烟与胎儿健康间的生理学关系研究得不够.

参数估计

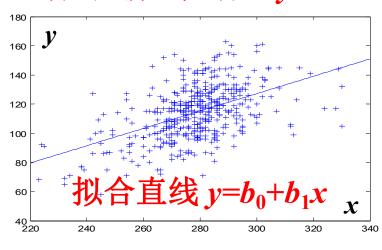
参数估计	不吸烟孕妇(n=742)	吸烟孕妇(n=484)
新生儿体重均值的点估计	μ_{y0} =123.0472	μ_{y1} =114.1095
新生儿体重均值的区间估计	[121.7932 124.3011]	[112.4930 115.7260]
新生儿体重低比例的点估计	$r_0 = 0.0310$	$r_1 = 0.0826$
怀孕期均值的点估计	μ_{x0} =280.1869 (n=733)	μ_{x1} = 277.9792
怀孕期均值的区间估计	[278.9812 281.3926]	[276.6273 279.3311]
早产率的点估计	$q_0 = 0.0764$	$q_1 = 0.0854$

- 吸烟比不吸烟孕妇新生儿体重平均低9 oz (250g), 新生儿体重低的比例明显高.
- 吸烟比不吸烟孕妇怀孕期平均短2天,早产率差不多.

新生儿体重和怀孕期的差别在统计学上是否显著?

假设检验

假设检验	假设	检验结果(α=0.05)
新生儿体重均值	$\mathbf{H_0}: \mu_{v0} = \mu_{v1}, \mathbf{H_1}: \mu_{v0} \neq \mu_{v1}$	拒绝H ₀ ,接受H ₁
怀孕期均值	$H_0: q_0 = q_1, H_1: q_0 \neq q_1$	接受H ₀ ,拒绝H ₁


- 吸烟孕妇的新生儿体重比不吸烟孕妇的低、且新生儿体重低的比例高,在统计学上有显著意义.
- 吸烟与不吸烟孕妇孕期的差别难以肯定是显著的(若α=0.01将接受怀孕期均值相等的假设)

一元线性回归分析

假设检验结果: 孕妇吸烟状况对新生儿体重大小有 显著影响,但是对怀孕期长短的影响难以确定。

• 新生儿体重与怀孕期的关系如何?

480位吸烟孕妇的怀孕 期x和新生儿体重v

直线 $y=b_0+b_1x$ 描述了数据的变化趋势,但是拟合得不好

- · 怎样衡量由拟合得到的 模型的有效性?
- · 模型系数精确度和模型 预测的数值范围多大?

一元线性回归模型 $y=b_0+b_1x+\varepsilon$ 怀孕期x,新生儿体重y

随机变量 $\varepsilon \sim \Re x$ 外,影响v的随机因素的总和, 对于不同的x, ε 相互独立且服从 $N(0,\sigma^2)$ 分布.

验

据 x,y

系数	系数估计值	系数置信区间
b_0	-51.2983	[-77.5110 -25.0856]
\boldsymbol{b}_1	0.5949	[0.5008 0.6891]
$R^2=$	0.2438, <i>F</i> =154	$p < 0.0001, s^2 = 249$

 b_1 置信区间不含零点, $F=154 >> F_{(1,n-2)}=3.8610$ 模 $(\alpha=0.05)$,应拒绝 H_0 : $b_1=0$ 的假设,模型有效。 型 检

 b_1 置信区间较长,决定系数 R^2 较小(v的24.38% 由x决定),剩余方差s²较大,模型的精度不高.

一元线性回归模型 $y=b_0+b_1x+\varepsilon$ 怀孕期x,新生儿体重y

模型解释

$$\widehat{b_1} = 0.5949$$

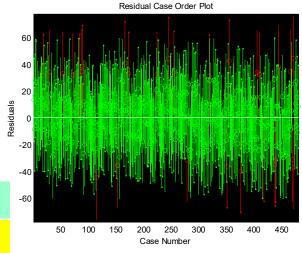
$$\widehat{b_0}$$
=-51.2983

- · 吸烟孕妇怀孕期增加一天, 新生儿体重平均增加约0.6 oz.
- 不是x=0时y的估计, 只能在数据范围内(x=220~340天) 估计.

模型预测

$$\widehat{y} = \widehat{b_0} + \widehat{b_1} x = -51.2983 + 0.5949x$$

若怀孕期x=280天,新生儿体重 \hat{y} =114.5937 oz, 预测区间为[88.0949,141.0925]


• 模型精度不高导致预测区间如此之大!

一元线性回归模型 $y=b_0+b_1x+\varepsilon$ 怀孕期x, 新生儿体重y

模型残差 $e=y-\hat{y}$ ~误差 ϵ 的估计值(均值为0的正态分布)

若数据残差的置信区间不含 零点,称为异常点(偏离整体 数据的变化趋势),应剔除。

系数	系数估计值	系数置信区间		
b_0	-53.6126	[-77.0606 -30.1645]		
\boldsymbol{b}_1	0.6007	[0.5164 0.6850]		
$R^2=0$.3040 F=196	$p < 0.0001$ $s^2 = 182$		

虽然 b_0 和 b_1 的估计值变化不大,但置信区间变短, 且 R^2 和F变大, s^2 减小,说明模型精度得到提高.

一元线性回归模型 $y=b_0+b_1x+\varepsilon$ 怀孕期x,新生儿体重y

690位不吸烟孕 妇数据*x,y* (剔除 ↓ 异常点后)

系数	系数估计值	系数置信区间
b_0	33.5330	[14.9989 52.0671]
b_1	0.3201	[0.2541 0.3860]
$R^2=$	= 0.1165 $F=90$	$0 p < 0.0001 s^2 = 181$

$$\widehat{b_1} = 0.3201$$

- · 不吸烟孕妇怀孕期增加一天, 新生儿体重平均只增加0.32oz.
- · 对吸烟孕妇是增加约0.6oz, 二者相差很大!

将吸烟状况作为另一自变量,建立新生儿体重与2个自变量的回归模型,利用全体孕妇数据进行分析

多元线性回归分析

模型 $y=b_0+b_1x_1+b_2x_2+\varepsilon$

y~新生儿体重, $x_1~$ 孕妇怀孕期, $x_2=0,1~$ 不吸烟,吸烟

1145位全部孕妇数据(剔除异常点后)

 $\hat{y} = 0.7698 + 0.4365x_1 - 8.7610 x_2$

$$\widehat{b_1} = 0.4365$$

• 对于吸烟状况 x_2 相同的孕妇, x_1 增加一天y平均增加0.44oz.

在吸烟孕妇的0.6与不吸烟孕妇的0.32oz之间.

$$\widehat{b_2} = -8.7610$$

• x₁相同时,吸烟比不吸烟孕妇的新生儿体重平均约低8.8oz.

与参数估计的数值相同,但增加了 x_1 相同的条件.

多元线性回归分析

增加乘积项 $x_1x_2 \sim x_1$ 和 x_2 对y的综合影响

模型
$$y=b_0+b_1x_1+b_2x_2+\varepsilon$$

$$y=b_0+b_1x_1+b_2x_2+b_3x_1x_2+\varepsilon$$

系数	系数估计值	系数置信区间
b_0	34.0925	[15.4605 52.7244]
\boldsymbol{b}_1	0.3181	[0.2517 0.3844]
b_2	-87.0738	[-116.9656 -57.1820]
b_3	0.2804	[0.1734 0.3875]
$R^2=$	=0.2766 $F=14$	$5 p < 0.0001 s^2 = 183$

模型有效,但是 R²较小, s²较大, 仍有改进余地.

 $\hat{y} = 34.0925 + 0.3181x_1 - 87.0738 \ x_2 + 0.2804x_1 \ x_2$

$$x_2=0$$

$$\hat{y} = 34.0925 + 0.3181x_1$$

$$\sqrt{x_2}=1$$

$$\hat{y} = -52.9813 + 0.5985x_1$$

吸烟孕妇的一元模型

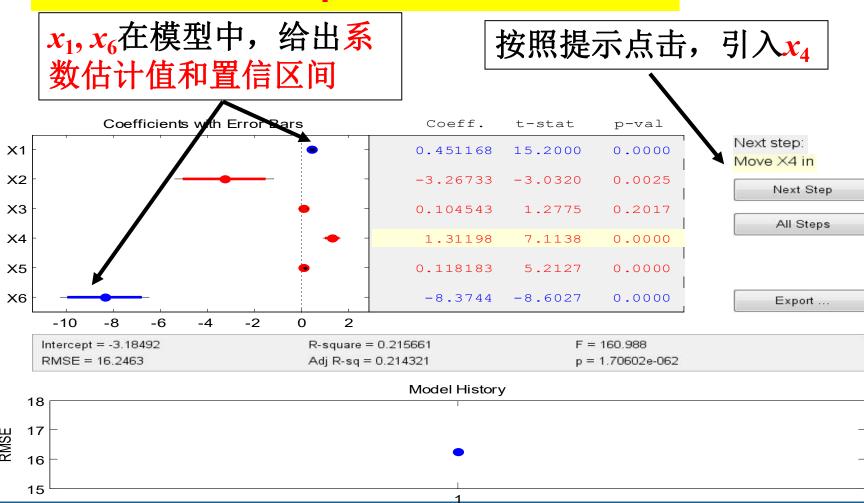
变量选择与逐步回归

- CHDS提供的数据中除孕妇怀孕期和吸烟状况外, 还有孕妇怀孕时的年龄、体重、身高和胎次状况.
- 新生儿体重模型中是否应该加入其他的自变量?

变量选择~从应用的角度希望将所有影响显著的自变量都纳入模型,又希望最终的模型尽量简单. 逐步回归~迭代式的变量选择方法.

• 利用CHDS数据提供的全部信息,通过逐步回归方 法选择变量,建立新生儿体重的线性回归模型.

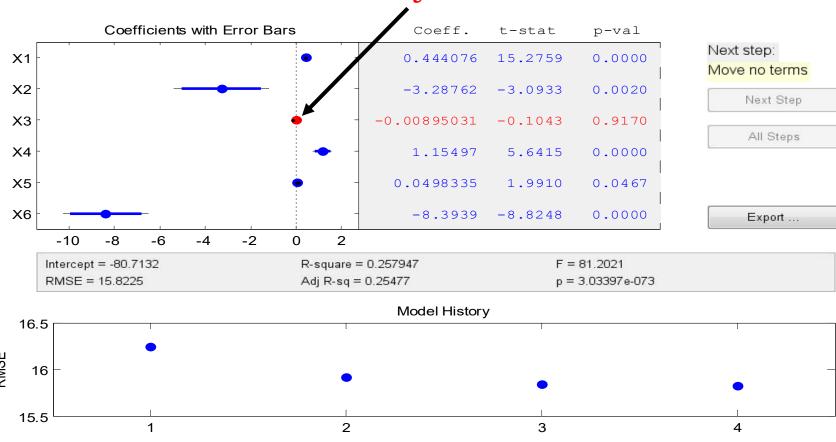
用逐步回归方法建立新生儿体重y的线性回归模型


 x_1 (孕妇怀孕期), x_2 (胎次状况), x_3 (年龄), x_4 (身高), x_5 (体重), x_6 (吸烟状况) 组成候选变量集合S.

- 选取 x_1, x_6 为初始子集 S_0
- 从 S_0 外的S中引入一个对y影响最大的x, $S_0 \rightarrow S_1$.
- 对 S_1 中的x进行检验,移出一个影响最小的, $S_1 \rightarrow S_2$
- 继续进行,直到不能引入和移出为止.
- 引入和移出都以给定的显著性水平为标准.

显著性水平取缺省值(引入 α =0.05, 移出 α =0.10)

MATLAB统计工具箱中的逐步回归


逐步回归命令stepwise第1个输出图形

MATLAB统计工具箱中的逐步回归

按照提示点击,依次引入 x_4, x_2, x_5

最终模型包含除x3外的所有自变量

用逐步回归方法建立新生儿体重v的线性回归模型

 $\hat{y} = -80.7132 + 0.4441x_1 - 3.2876x_2 + 1.1550x_4 + 0.0498x_5 - 8.3939x_6$

 x_1 (怀孕期), x_2 (胎次状况), x_4 (身高), x_5 (体重), x_6 (吸烟状况).

$$\widehat{b_6}$$
 =-8. 3939

• x_1,x_2,x_4,x_5 相同时,吸烟比不吸烟 孕妇的新生儿体重平均低8.4 oz.

$$\widehat{b_1}$$
, $\widehat{b_4}$, $\widehat{b_5} > 0$

• 孕妇的怀孕期、身高、体重对新生儿体重的影响是正面的.

$$\widehat{b_2} = -3.2876$$

• 第1胎新生儿体重比非第1胎平均 约低3.3 oz (第1胎 x_2 =1).

相关分析

y和各自变量的相关系数矩阵

	У	\mathbf{x}_1	\mathbf{x}_2	X ₃	X_4	X ₅	X ₆
y	1.0000	0.4075	-0.0439	0.0270	0.2037	0.1559	-0.2468
\mathbf{x}_1		1.0000	0.0809	-0.0534	0.0705	0.0237	-0.0603
\mathbf{X}_2			1.0000	-0.3510	0.0435	-0.0964	-0.0096
X_3				1.0000	-0.0065	0.1473	-0.0678
X_4					1.0000	0.4353	0.0175
X ₅						1.0000	-0.0603
\mathbf{x}_6							1.0000

- 与y相关性较强的是怀孕期 x_1 ,吸烟状况 x_6 ,身高 x_4 .
- 自变量间相关性较强的有:孕妇体重 x_5 与身高 x_4 的正相关;年龄 x_3 与胎次状况 x_2 的负相关(年龄越大第1胎 x_2 =1越少).

当几个自变量间有较强相关性时,删除多余的只保留一个不会对模型有效性和精确度有多大影响

不同年龄段孕妇吸烟对新生儿体重的影响

孕妇按年龄分组建立y与 x_1, x_2, x_4, x_5, x_6 的回归模型

	小于25岁	25~30岁	30~35岁	大于35岁
$\mathbf{b_0}$	-66.3893	-39.1296	-157.1307	-130.1740
b ₁ (怀孕期)	0.3972	0.3521	0.5951	0.6728
$\mathbf{b_2}$	-0.9978	-7.4124	-0.0932	-4.1835
$\mathbf{b_4}$	1.2144	0.8409	1.6828	0.8747
$\mathbf{b_5}$	-0.0021	0.0959	0.0557	0.0732
b ₆ (吸烟状况)	-8.4119	-8.2656	-10.5411	-6.4008
\mathbb{R}^2	0.2549	0.2330	0.3394	0.3136
S^2	211.6359	239.7201	272.6021	304.7208
n	444	362	211	157

对于x₁和x₆两个影响y的主要因素,30岁以下两组结果差别不大,而与30岁以上两组则有一定差异.

练习

- 运行本PPT中备注里面的代码,并进行结果解释。
- 利用预测值的区间估计的计算公式,对480位吸烟孕 妇数据,若怀孕期x=280天,计算新生儿体重95%的 置信区间。