

## 8.1 基本功能指令

#### 8.1.1 使用组织块 OB

组织块 0B 是操作系统与用户程序的接口,由操作系统调用。组织块中除可以用来实现 PLC 循环扫描控制以外,还可以完成 PLC 的启动、中断程序的执行和错误处理等功能。

#### (1)事件和组织块

事件是 S7-1200 PLC 操作系统运行的基础,分为能够启动 OB 的和无法启动 OB 的两类事件。

用户程序循环取决于事件和给这些事件分配的 OB,以及包含在 OB 中的程序代码或在 OB 中调用的程序代码。表 8.1 所示为能够启动 OB 的事件,其中包括相关的事件类别。

表 8.1 能够启动 OB 的事件

| 事件类别   | OB 号       | OB 数目                                         | 启动事件                                                                       | OB 优结 |
|--------|------------|-----------------------------------------------|----------------------------------------------------------------------------|-------|
| 循环程序   | 1 , > =200 | > =1                                          | 启动或结束上一个循环 OB                                                              | 1     |
| 启动     | 100, > =20 | > =0                                          | STOP 到 RUN 的转换                                                             | 1     |
| 延时中断   | > =200     | 是夕 4 个                                        | 延时时间结束                                                                     | 3     |
| 循环中断   | > =200     | 最多4个                                          | 等长间隔时间结束                                                                   | 4     |
| 硬件中断   | > =200     | 最多 50 个(通过<br>DETACH 和<br>ATTACH 指令可使<br>用更多) | 上升沿(最多16个) 下降沿(最多16个) HSC: 计数值=参考值(最多6次) HSC: 计数方向变化(最多6次) HSC: 外部复位(最多6次) | 6     |
| 中断错误中断 | 82         | 0或1                                           | 模块检测到错误                                                                    | 9     |
| 时间错误   | 80         | 0 或 1                                         | 超出最大循环时间<br>仍在执行所调用的 OB 队列溢出,<br>因中断负载过高而导致中断丢失                            | 26    |

无法启动 OB 的事件见表 8.2, 其响应由操作系统完成。

表 8.2 无法启动 OB 的

重件

| 事件类别        | 事件                                        | 事件优先级 | 系统响应 |
|-------------|-------------------------------------------|-------|------|
| 插入/卸下       | 插入/卸下模块                                   | 21    | STOP |
| 访问错误        | 过程映像更新期间的 I/O 访问错误                        | 22    | 忽略   |
| 编程错误        | 块中的编程错误(如果激活了本地错<br>误处理,则会执行块中的错误程序)      | 22    | STOP |
| I/O 访问错误    | 块中的 I/O 访问错误(如果激活了本地错误处理,则会执行块程序中的错误处理程序) | 24    | STOP |
| 超出最大循环 时间两倍 | 超出最大循环时间两倍                                | 27    | STOP |

#### (2) 启动组织块

接通 CPU 后, S7-1200 PLC 在开始执行用户程序之前首先执行启动程序,可以在启动 OB 中完成程序的初始化。

S7-1200 PLC 支持三种启动模式:不重新启动模式、暖启动-RUN 模式和暖启动断电前的工作权 下管选择哪种启动模式,已编写的所有启动 OB 都会执行。

表 8.3 启动 OB 声明表中变量的 含义

| 变量            | 类型   | 描述                 |
|---------------|------|--------------------|
| LostRetentive | BOOL | =1 , 如果保持性数据存储区已丢失 |
| LostRTC       | BOOL | =1 , 如果实时时钟已丢失     |

【例 8-1 】 S7-1200 PLC 中要利用实时时钟,如交通灯不同时间段切换不同的控制策略等,则启动运行时,需要检测实时时钟是否丢失,若丢失,则警示灯 Q0.0 亮。

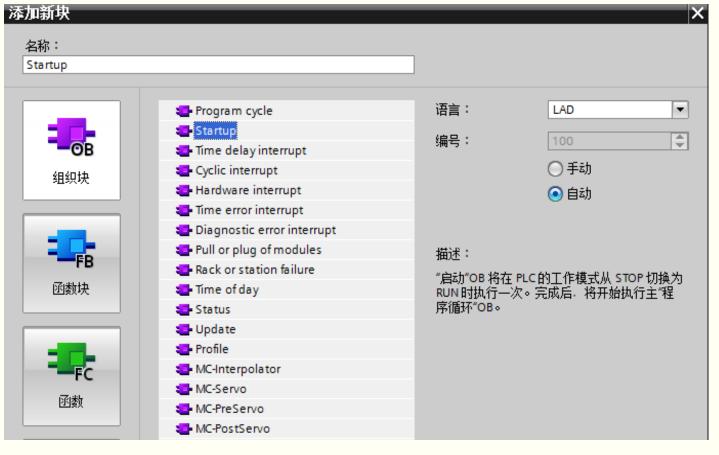



图 8.1 新建启动组

在 OB100 中编写程序如图 8.2 所示,则当 S7-1200 PLC 从 STOP 转到 RUN 时,若实时时钟丢失则输出 Q0.0 指示灯亮。

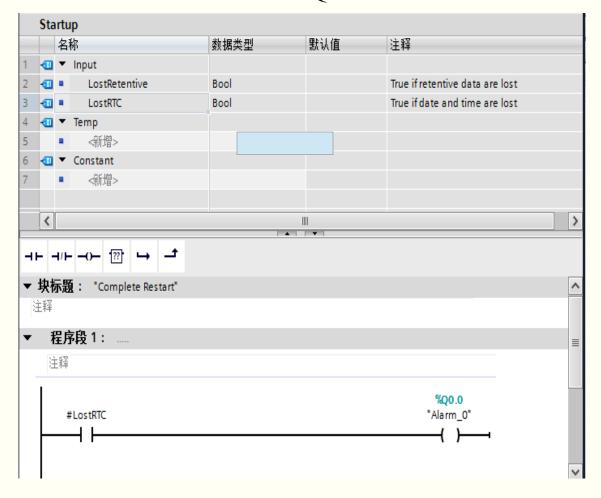



图 8.2 启动 OB 的局部变量和应用

#### (3)循环中断组织块

循环中断组织块用于按一定时间间隔循环执行中断程序,例如周期性地定时执行闭环控制系统的 PID 运算程序等。

【例 8-2 】使用循环中断组织块,每隔 1.5 秒 MW20 的值加 1。

在项目视图项目树中,双击 PLC 设备程序块下的"添加新块"项,选择添加"Cyclic·interrupt"类型的 OB 块,用手动方式设置程序的编号,并将循环时间设为 1.5 秒,如图 8.3 所示,对应的 PLC 程序如图 8.4。



| 添加新块             |                             |                          | ×                             |
|------------------|-----------------------------|--------------------------|-------------------------------|
| 名称:              |                             |                          |                               |
| Cyclic interrupt |                             |                          |                               |
|                  |                             |                          |                               |
|                  | ♣ Program cycle             | 语言:                      | LAD ▼                         |
|                  | Startup                     | ADD.                     | 200                           |
| OB               | Time delay interrupt        | 编号:                      | 200                           |
| 组织块              | Cyclic inter                |                          | ◉ 手劫                          |
|                  | <b>₹</b> Hardware interrupt |                          | ○自动                           |
|                  | Time error interrupt        | (G1704)3 / ) ·           | 4500                          |
|                  | Diagnostic error interrupt  | 循环时间 (ms):               | 1500                          |
|                  | 2 Pull or plug of modules   | 描述:                      |                               |
| FB               | Rack or station failure     |                          | 可以完期自动程度 布莱                   |
| 函数块              | <b>₹</b> Time of day        | 通过 III 不可 00<br>须执行循环程序。 | . 可以定期启动程序,而无可以在本对话框或在该 OB间隔。 |
|                  | <b>3</b> Status             | 的属性中定义时间                 | 间隔。                           |
|                  | <b>₫</b> Update             |                          |                               |
|                  | Profile                     |                          |                               |
| FC               | MC-Interpolator             |                          |                               |
| ezek.            | MC-Servo                    |                          |                               |
| 函数               | MC-PreServo                 |                          |                               |
|                  | MC-PostServo                |                          |                               |

图 8.3 设置循环中断组织块

属性

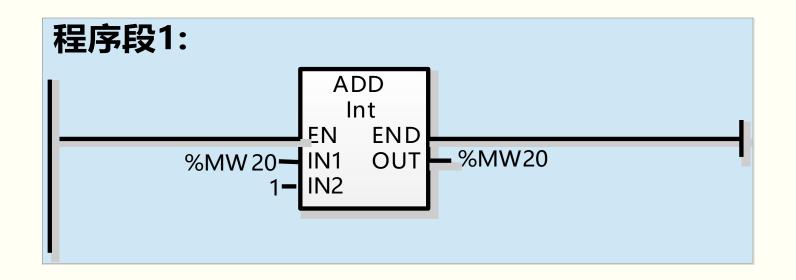
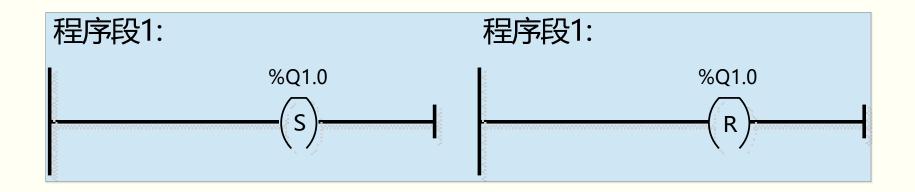



图 8.4 OB200 程序

#### (4)硬件中断组织块

硬件中断 OB 用来响应特定事件,最多可使用 50 个硬件中断 OB ,它们在用户程序中彼此独立。使用时只能将触发报警的事件 分配给一个硬件中断 OB ,而一个硬件中断 OB 可以对应给多个事件。

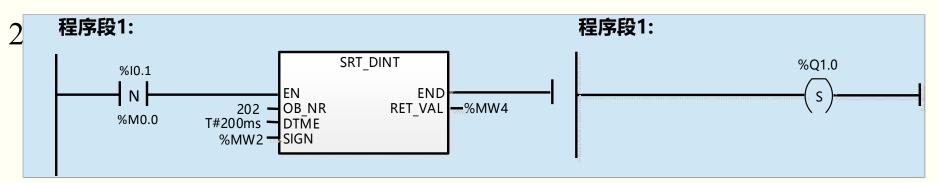

【例 8-3】新建一个硬件中断组织块 OB200,通过硬件中断在 I0.0上升沿时将 Q1.0 置位,在 I0.1下降沿时将 Q1.0 复位。



| PLC_1 [CPU 1214C DC/ | DC/DC]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ☑ 属性 | <b>过信息 i</b> 见诊断 |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|--|
| 常规 10 变量             | 系统常数 文本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                  |  |
| 通道0                  | <b>△</b> → 通道0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                  |  |
| 通道1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                  |  |
| 通道2                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                  |  |
| 通道3                  | 通道地址: 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                  |  |
| 通道4                  | 输入滤波器: 6.4 millisec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                  |  |
| 通道5                  | THIS COUNTY OF THE STATE OF THE |      |                  |  |
| 通道6                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                  |  |
| 通道7                  | ☑ 启用上升沿检测:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                  |  |
| 通道8                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                  |  |
| 通道9                  | 事件名称:: 上升沿0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                  |  |
| 通道10                 | 硬件中断:: Hard interrupt1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                  |  |
| 通道11                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                  |  |
| 通道12                 | ★ 优先級 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  |  |
| 通道13                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                  |  |
| ▶ 数字量输出              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                  |  |
| I/O 地址               | ☑ 启用下降沿检测:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                  |  |
| 硬件标识符                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                  |  |
| ▼ AI 2               | 事件名称:: 下降沿0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                  |  |
| 常规                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                  |  |
| ▼ 模拟量输入              | 硬件中断:: Hard interrupt2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                  |  |
| 通道0                  | 优先级 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                  |  |
| 通道1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                  |  |

图 8.5 设置硬件中断

在 OB200 中编写程序,如图 8.6a 所示,在 OB201 中编写程序,如图 8.6b 所示。




a) 置位 Q1.0 b) 复位 Q1.0 图 8.6 编写程序

#### (5)延时中断组织块

延时中断组织块用来编写延时中断程序,在某个特定事件出现时,如特定的输入出现下降沿或上升沿,可以通过 SRT\_DINT 指令启动延时中断程序,延时时间在 SRT\_DINT 中指定,时间精度为1ms,同时还可通过参数 RET\_VAL 检测指令执行是否正常。

【例 8-4】在 I0.1 的下降沿启动延时中断程序 OB202 的调用,



a ) OB1 程序 b ) OB202 程序 图 8.7 示例程序

(6)时间错误组织块

在用户程序中只能使用一个时间错误中断组织块,在以下事件 发生时,操作系统将自动进行调用:

- 1)循环程序超出最大循环时间。
- 2)被调用 0B (如延时中断 OB 和循环中断 0B) 当前正在执行。
  - 3)中断 OB 队列发生溢出。
  - 4)由于中断负载过大而导致中断丢失。

时间错误中断 OB 的启动信息含义如下表所示。

表 8.4 时间错误中断 OB 启动信

| 变量       | 数据类型                                                                                      | 描述             |
|----------|-------------------------------------------------------------------------------------------|----------------|
| Fault_id | BYTE       0x01:超出最大循环时间         0x02:仍在执行被调用 O         0x07:队列溢出         0x09:中断负载过大导致中断 |                |
| Csg_OBnr | OB_ANY                                                                                    | 出错时要执行的 OB 编号  |
| Csg_prio | UINT                                                                                      | 出错时执行的 OB 的优先级 |

#### (7)诊断组织块

可以为具有诊断功能的模块启用诊断错误中断功能,使模块能检测到 I/O 状态变化,因此模块会在出现故障(进入事件)或故障不再存在(离开事件)时触发诊断错误中断。如果没有其他中断 OB 激活,则调用诊断错误中断 OB; 若已经在执行其他中断 OB, 诊断错误中断将置于同优先级的队列中。

在用户程序中只能使用一个诊断错误中断 OB。诊断错误中断 OB的启动信息如表 8.5 所示。表 8.6 列出了局部变量 IO-state 所能包含的可能 I/O 状态。

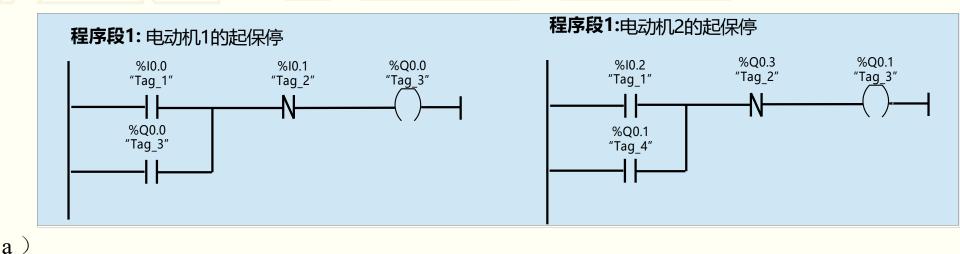


#### 表 8.5 诊断错误中断 OB 启动

信息

| 变量          | 数据类型   | 描述                  |  |  |  |  |
|-------------|--------|---------------------|--|--|--|--|
| IO_state    | WORD   | 包含具有诊断功能的模板的 I/O 状态 |  |  |  |  |
| laddr       | HW_ANY | HW-ID               |  |  |  |  |
| Channel     | UINT   | 通信编号                |  |  |  |  |
| multi_error | BOOL   | 为 1 表示有多个错误         |  |  |  |  |

#### 表 8.6 IO\_state


| IO_state | 含义                                       |
|----------|------------------------------------------|
| 位 0      | 组态是否正确,为1表示组态正确                          |
| 位 4      | 为 1 表示存在错误,如断路等                          |
| 位 5      | 为1表示组态不正确                                |
| 位 6      | 为 1 表示发生了 I/O 访问错误,此时程序包含存在访问错误 I/O 的硬件标 |
|          | 识符                                       |

#### 8.1.2 使用功能 FC 和功能块 FB

PLC 有三种编程方法:线性化编程、模块化编程和结构化编程。

【例 8-5】有两台电动机,控制模式是相同的:按下启动按钮 (电动机1对应 I0.0,电动机2对应 I0.2),电动机启动运行(电动机1对应 Q0.0,电动机2对应 Q0.1),按下停止按钮(电动机1对应 I0.1,电动机2对应 I0.3),电动机停止运行。

根据模块化编程的思想,分别在 FC1 和 FC2 两个子程序中利用 启保停电路设计不同电机的控制程序,如图 8.8a 和图 8.8b 所示,最 后在主程序 OB1 中调用此两程序。



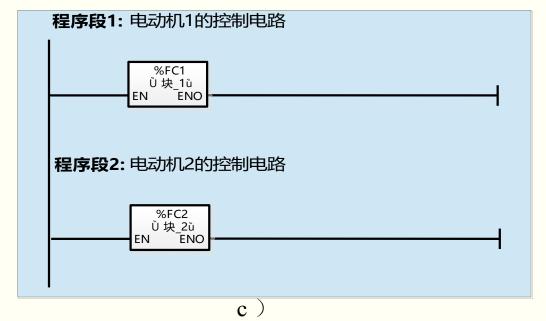
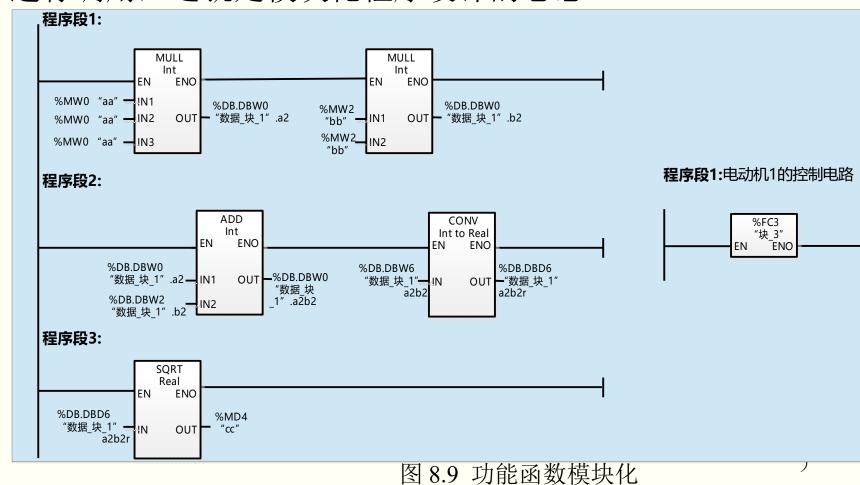




图 8.8 电动机控制的模块化编程

【例 8-6】采用模块化编程思想实现公式:  $\sqrt{a^3+b^2}$ 。 首先建立一个子程序 FC3 ,实现上式的功能,然后在主程序 OB1 中进行调用,这就是模块化程序设计的思想。



#### (2) 临时变量

临时变量可以用于所有块(OB、FC、FB)中。当块执行的时候,它们被用来存储临时数据,退出该块时,这些数据将丢失

临时变量在块的变量声明表中定义。点击程序编辑器工具栏间 的上下箭头,可以收缩或展开块的变量声明表,其中 Input 为输入 参数, Output 为输出参数, InOut 为输入输出参数, Temp 为临时 工作变量。在此程序设计中,定义了整型临时变量 a3, b2 和 sum i,以及实型临时变量 sum r,分别存储变量的立方、平方, 以及它们的和。程序相对简单,在此不再赘述。定义好临时变量 后,在子程序中就能使用所定义的临时变量和全局变量,临时变 量的标识是在前面加#,全局变量的标识是在前面加%,当二者

同友叶 优生体用收吐亦具 咬北次斗人具人头选择人民亦具



图 8.10 定义临时变量 编程

#### (3)结构化编程

当任务要求中出现多个类似的功能时,采用模块化编程方法将不可避免地出现大量的重复代码,这时可以利用结构化编程方法对其进行优化,即对功能块的输入输出进行封装,当采用不同的参数进行功能(FC、FB)调用时,程序实现对不同对象的控制,这就是结构化编程的意义所在。

结构化编程有如下优点:

- 1)程序只需生成一次,显著减少了编程时间。
- 2) 该块只在用户存储器中保存一次,显著降低了存储容量。
- 3) 该块可以利用不同的参数多次调用,完成性质相同的一类功



形式参数的类型及作用列于表 8.7。

表 8.7 形式参数的

米刑

|     |           |        | 271713      |       |
|-----|-----------|--------|-------------|-------|
| 参数类 | <b>烂型</b> | 定义     | 使用方法        | 图形显示  |
| 输入参 | 参数        | Input  | 只读,将数据传入程序  | 在块的左侧 |
| 输入参 | 参数        | Output | 只写,将数据传出程序  | 在块的右侧 |
| 输入/ | 输出参数      | InOut  | 可读写,数据的输入输出 | 在块的左侧 |
| 返回参 | 参数        | Return | 只写,将数据传出程序  | 在块的右侧 |
| 临时参 | 参数        | Temp   | 可读写,程序内使用   | 不显示   |

【例 8-7】用结构化编程方法重新编写前述电动机的控制电路程序新建块 FC4: Motor, 其形式参数定义和程序实现示意如下。

|   | Motor      |   |        |          |     |  |  |
|---|------------|---|--------|----------|-----|--|--|
|   |            | 名 | 称      | 数据类型     | 默认值 |  |  |
| 1 | <b>411</b> | • | Input  |          |     |  |  |
| 2 | 1          |   | start  | Bool     |     |  |  |
| 3 | 1          |   | stop   | Bool     |     |  |  |
| 4 | <b>411</b> | • | Output |          |     |  |  |
| 5 |            |   | <新増>   |          |     |  |  |
| 6 | <b>4</b>   | ~ | InOut  | <b>=</b> |     |  |  |
| 7 | <b>=</b>   | • | motor  | Bool     |     |  |  |

图 8.11 结构化编程中的参数 定义

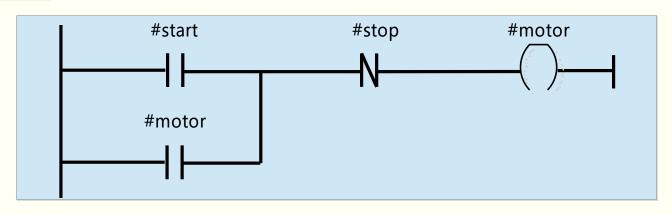



图 8.12 结构化编程中的程序设计

#### 要注意以下问题:

- 1)如果在编辑一个块的程序时使用符号名,编辑器将在该块的变量声明中查找该符号名。如果该符号名存在,编辑器将把它当做局部变量,并在符号名前加"#"号。
- 2)如果它不属于局部变量,则编辑器将在全局符号表中搜索。如果找到该符号名,编辑器将把它当做全局变量,并在符号名上加引号。
- 3)如果在全局变量表和变量声明表中使用了相同的符号名,编辑器将始终把它当做局部变量,除非输入该符号名时加了引号,则

与模块化方法在使用上的不同就是,结构化编程中的输入输出参数是可以根据需要进行改变的,因而程序可以重用。下图为在 OB1 中调用函数 FC4:Motor 控制 2 台电动机。

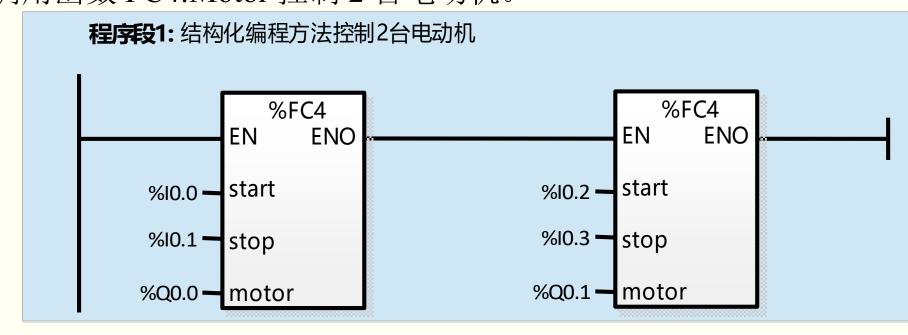
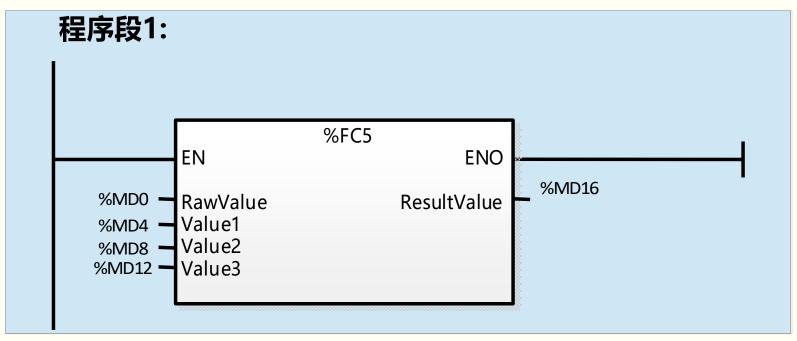



图 8.13 结构化程序设计中的程序 调用

【例 8-8】在工业生产中,经常需要对采集的模拟量进行滤波处理。本例将最近采集的三个采样值进行均值滤波,即将三个采样值求和,然后除以 3。假设最新采集的模拟量工程值存储在 MD0 中,处理结果存储在 MD16 中,所有数据均为浮点型。


编程思路:利用堆栈概念,将最近采集的三个数保存在固定的全局地址中,并在每个控制周期进行数据更新,以确保参与运算的数据是最新的,因而此子程序 FC5 可以在循环中断处理程序中调用



| FC5                                   |          |     |                                            |       |                                          |
|---------------------------------------|----------|-----|--------------------------------------------|-------|------------------------------------------|
| 名称                                    | 数据类型     | 默认值 | 注释                                         |       |                                          |
| 1 <b>▼</b> Input                      |          |     |                                            |       |                                          |
| 2 RawValue                            | Real     |     |                                            |       |                                          |
| 3 <b>▼</b> Output                     |          |     |                                            |       |                                          |
| 4 <b>■</b> ResultValue                | Real     |     |                                            |       |                                          |
| 5 ▼ InOut                             |          |     |                                            |       |                                          |
| 6 ◀ ■ Value1                          | Real     |     |                                            |       |                                          |
| 7 • Value2                            | Real     |     |                                            |       |                                          |
| 8 👊 🗷 Value3                          | Real     |     |                                            | A   T |                                          |
| → → → → → → → → → → → → → → → → → → → | _#Value1 |     | MOVE EN — ENO IN * OUT1 —# Value2          |       | MOVE :N — ENO — + Value3                 |
| ▼ 程序校 4:                              |          |     |                                            |       |                                          |
| # Value2 — IN2 #                      |          |     | ADD Auto (Real)  EN — ENO IN1 OUT —# sum_r |       | DIV Auto (Real)  N — ENO — # ResultValue |

图 8.14b 示意了调用 FC5 并赋值实际参数,将平均值存放在 MD16 中。这样,通过不同的实际参数可以重复调用 FC5 进行均值

滤波。



b) 图 8.14 子程序 FC5 b)主程序中调用

#### (4) FB 的使用

FB不同于 FC 之处是它带有一个存储区,也就是说,有一个局部数据块被分配给 FB ,这个数据块称为背景数据块(Instance Data Block)。

每次调用 FB 时可以指定不同的实际参数。当块退出时,背景数据块中的数据仍然保持。可以看到, FB 具有以下优点:

- 1)当编写 FC 程序时,必须寻找空的标志区或数据区来存储需保持的数据,并且要自己编写程序来保存,而 FB 中的静态变量可由系统自动保存。
  - 2)使用静态变量可避免两次分配同一存储区的危险。

结合前面例子,如果用 FB 块实现 FCI 的功能,并用静态变量 Early Value 、 Lasf Value 和 Lalest Value 来代替原来的形式参数,如表 8.8 所示,将可省略这三个形式参数,简化了块的调用。

表 8.8 定义 FB 的形式

会粉

| 参数类型 | 名称             | 数据类型 | 注释       |
|------|----------------|------|----------|
| IN   | RawValue       | REAL | 要处理的原始数值 |
| STAT | EarlyValue     | REAL | 最早的一个数   |
| STAT | LastValue      | REAL | 较早的一个数   |
| STAT | LatestValue    | REAL | 最近的一个数   |
| OUT  | ProcessedValue | REAL | 处理后的数    |
| TEMP | Temp1          | REAL | 中间结果     |
| TEMP | Temp2          | REAL | 中间结果     |

在 FBI 中定义形式参数,编写程序同图 8.14 a ,图 8.15 所示为调用 FB1 子程序,其中 DBI0 为 FBI 的背景数据块,在输入时若 DBI0 不存在则将自动生成该背景数据块。

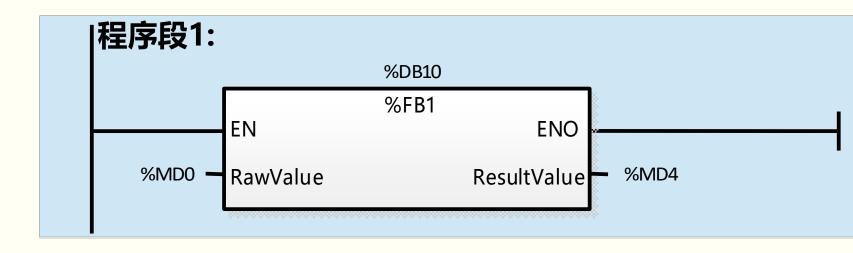



图 8.15 调用 FB1 子 程序

双击打开背景数据块 DB10,可以看到 DB10 中保存的正是在FB的接口中定义的形式参数,如图 8.16 所示。对于背景数据块,无法进行编辑修改.而只能读写其中的数据。

| → → → → → → → → → → → → → → → → → → → |              |             |      |     |    |         |             |          |     |   |
|---------------------------------------|--------------|-------------|------|-----|----|---------|-------------|----------|-----|---|
| FB1_DB                                |              |             |      |     |    |         |             |          |     |   |
|                                       | 名            | 3称          | 数据类型 | 起始值 | 保持 | 可从 HMI/ | <u></u> ₩ н | 在 HMI    | 设定值 | 注 |
| 1                                     | <b>4</b> ■ ▼ | Input       |      |     |    |         |             |          |     |   |
| 2                                     | •            | RawValue    | Real | 0.0 |    | ✓       | ✓           | ✓        |     |   |
| 3                                     | <b>4</b> □ ▼ | Output      |      |     |    |         |             |          |     |   |
| 4                                     | • •          | ResultValue | Real | 0.0 |    | ✓       | ✓           | ✓        |     |   |
| 5                                     | <b>4</b> ■   | InOut       |      |     |    |         |             |          |     |   |
| 6                                     | <b>4</b> □ ▼ | Static      |      |     |    |         |             |          |     |   |
| 7                                     | • •          | EarlyValue  | Real | 0.0 |    | ✓       | ✓           | ✓        |     |   |
| 8                                     | <b>41</b> •  | LastValue   | Real | 0.0 |    | ✓       | ✓           | ✓        |     |   |
| 9                                     | <b>1</b>     | LatestValue | Real | 0.0 |    | ✓       | <b>V</b>    | <b>✓</b> |     |   |

图 8.16 背景数据块

#### (5)检查块的一致性

如果在程序生成期间或之后调整或增加某个块(FC或FB)的 接口或代码,可能导致时间标签冲突。反过来,时间标签冲突可能 导致在调用的和被调用的或有关的块之间不一致。针对这种情况, 当一个块已在程序中被调用之后,再增加或删除块的参数,必须更 新其他块中该块的调用。否则, CPU 会进入 STOP 状态或者块的 功能不能实现。在项目视图中打开程序编辑器,通过菜单命令"选 项"→"块调用",点击"更新所有块调用",可以更新所有块的 时间标签冲突和块不一致的调用。

### 8.1.3 使用数据块 DB

数据是以变量的形式进行存储的,通过存储地址和数据类型来确保数据的唯一性。数据的存储地址包括 I/O 映像区、位存储器、局部存储区和数据块等,数据块需要占用用户的存储器空间;数据类型有位、字节、字、双字等形式,访问数据块中的数据是通过符号或绝对地址的形式进行的。

根据数据块的使用范围,可将其分为全局数据块(也叫共享数据块)和背景数据块。用户程序中的所有逻辑块都可以访问全局数据块中的信息,而背景数据块只能分配给特定的FB,仅在所

#### (1) 定义数据块

在项目视图左侧项目树中的 PLC 设备项下双击"程序块"下的"添加新块",打开"添加新块"对话框,如图 8.17 所示。

| 添加新块<br>名称: |              |                |    | ×  |
|-------------|--------------|----------------|----|----|
| 数据块_3       |              |                |    |    |
|             |              |                |    |    |
|             | 类型:          | <b>□</b> 全局 DB |    |    |
| OB          | 语言:          | DB ▼           |    |    |
| 组织块         | 编号:          | 1 💠            |    |    |
|             |              | ○手动            |    |    |
|             |              | ● 自动           |    |    |
| FB          | 描述:          |                |    |    |
|             | 数据块 (DB) 保存程 | 序数据。           |    |    |
| 函数块         | 更多信息         |                |    |    |
|             |              |                |    |    |
| FC          |              |                |    |    |
| 函数          |              |                |    |    |
|             |              |                |    |    |
| DB          |              |                |    |    |
| 数据块         |              |                |    |    |
| > 其它信息      |              |                |    |    |
| ☑ 新增并打开(②)  |              |                | 确定 | 取消 |

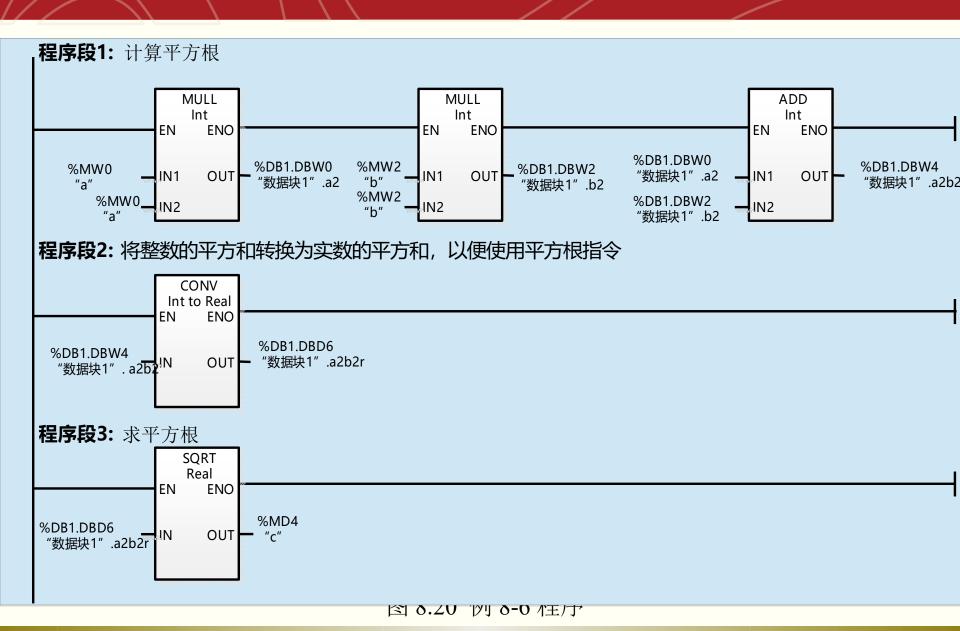
图 8.17"添加新块"对

单击"确定"按钮,则可以打开图 8.18 所示新建数据块,各变量默认情况下是可以在组态中可见的,并可以从"HMI/OPC UA"中读或写,如 PLC 外部没有接 HMI 设备,也没有通过 OPC 进行数据通信,则可以不勾选这些功能,否则一定要勾选。

|    | 数 | 抿 | 块_' | 1        |                |       |    |                  |              |              |     |      |
|----|---|---|-----|----------|----------------|-------|----|------------------|--------------|--------------|-----|------|
|    |   |   |     |          | 数据类型           | 起始值   | 保持 | 可从 HMI/OPC UA 访问 | 从 H          | 在 HMI        | 设定值 | 注释   |
| 1  | 1 | 1 | Sta | atic     |                |       |    |                  |              |              |     |      |
| 2  | 1 | • | 1   | sample1  | Bool           | false |    | $\checkmark$     | $\checkmark$ | $\checkmark$ |     | 采样值  |
| 3  | 1 | • |     | temp1    | Int            | 0     |    | $\checkmark$     | <b>~</b>     | $\checkmark$ |     | 温度   |
| 4  | 1 | • | •   | volt     | Array[110] 📳 🔻 |       |    | $\checkmark$     | $\checkmark$ | $\checkmark$ |     | 电压数组 |
| 5  | 1 | 1 |     | volt[1]  | Int            | 0     |    | ✓                | ✓            | ✓            |     |      |
| 6  | 1 | 1 |     | volt[2]  | Int            | 0     |    | ✓                | ✓            | ✓            |     |      |
| 7  | 1 | 1 |     | volt[3]  | Int            | 0     |    | ✓                | ✓            | ✓            |     |      |
| 8  | 1 | 1 |     | volt[4]  | Int            | 0     |    | ✓                | ✓            | ✓            |     |      |
| 9  | 1 | 1 |     | volt[5]  | Int            | 0     |    | ✓                | ✓            | ✓            |     |      |
| 10 | 1 | 1 |     | volt[6]  | Int            | 0     |    | ✓                | ✓            | ✓            |     |      |
| 11 | 1 | 1 |     | volt[7]  | Int            | 0     |    | ✓                | ✓            | ✓            |     |      |
| 12 | 1 | 1 |     | volt[8]  | Int            | 0     |    | ✓                | ✓            | ✓            |     |      |
| 13 | 1 | 1 |     | volt[9]  | Int            | 0     |    | ✓                | ✓            | ✓            |     |      |
| 14 | 1 | 1 |     | volt[10] | Int            | 0     |    | ✓                | ✓            | ✓            |     |      |

图 8.18 数据块编

#### (2)使用全局数据块举例


下面通过一个计算平方根的例子介绍全局数据块的使用。

【例 8-9 】 计算  $c^{\sqrt{a^2+b^2}}$  ,其中 a 为整数,存储在 MW0 中, b 为整数,存储在 MW2 , c 为实数,存储在 MD4 中。

建立全局数据块"数据一块\_1",选择自动编号,仅符号访问,定义存储中间计算结果的变量,如图 8.19 所示。编写的程序如图

| Ω        |               |        |        |     |     |    |   |  |       |  |            |  |  |  |
|----------|---------------|--------|--------|-----|-----|----|---|--|-------|--|------------|--|--|--|
| 数        | O. つへ<br>数据块1 |        |        |     |     |    |   |  |       |  |            |  |  |  |
|          | 名             | 称      | 数据类型   | 偏移里 | 起始值 | 保持 | 可 |  | 在 设定值 |  | 注释         |  |  |  |
| 1        | •             | Static |        |     |     |    |   |  |       |  |            |  |  |  |
| 1        | •             | a2     | Int    | 0.0 | 0   |    |   |  |       |  | a的平方       |  |  |  |
| 1        | •             | b2     | Int    | 2.0 | 0   |    |   |  |       |  | 的平方        |  |  |  |
| <b>a</b> | •             | a2b2   | Int    | 4.0 | 0   |    |   |  |       |  | a的平方与b的平方和 |  |  |  |
| P        | •             | a2b2r  | Real 🔳 | 6.0 | 0.0 |    |   |  |       |  | 平方和的实数形式   |  |  |  |
|          |               |        |        |     |     |    |   |  |       |  |            |  |  |  |
|          |               |        |        |     |     |    |   |  |       |  |            |  |  |  |
|          |               |        |        |     |     |    |   |  |       |  |            |  |  |  |

图 8.19 定义数据块中的



#### (3) 访问数据块

数据块用来存储程序设计过程中所用到的数据信息,用户在程序中需要对数据块中的数据进行读写访问,访问数据块内容的方法有两种:符号寻址和绝对地址寻址。

数据块的寻址格式类似于

DB10.DBB0 , DB10.DBW2 , DB1.DBD4 , DB10.DBX6.3 , 其中 DB10 为数据块编号,点后面的 DB 表示寻址数据块,最后的数字 0 、 2 、 4 、 6 表示寻址的起始字节地址, B 、 W 、 D 、 X 分别表示寻址宽度为一个字节(Byte )、一个字(Word)、一个双字(Double Word )和一个位(Bit )。字节、字、双字和位

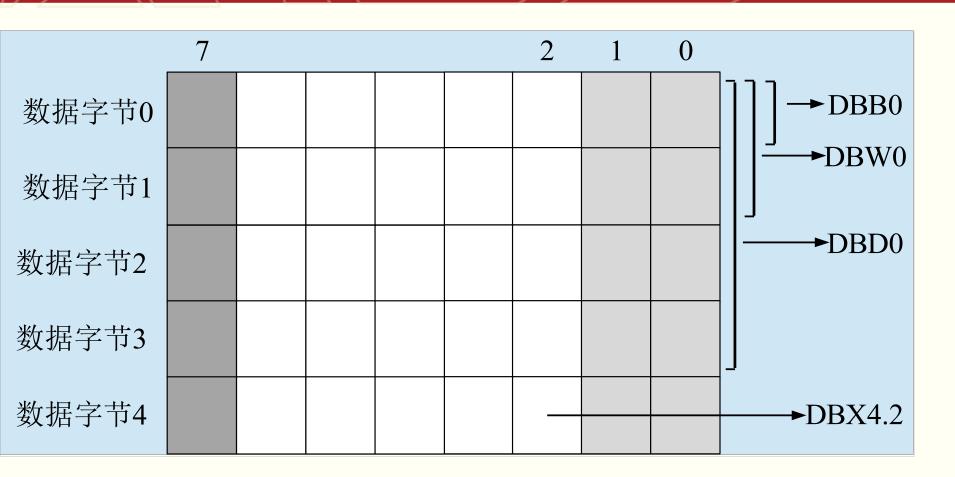



图 8.21 数据单元示意图

由上可知,DB1.DBW200 是由 DBB200 和 DBB201 构成的,在 S7-1200 系列 PLC 中, DBB200 为高位, DBB201 为低位,也就是 说,如果 MB200=16#78 , MB201=16#12 ,则 MW200=16#7812 。 下图示意了 MW200 和 MD200 的高低位组成。

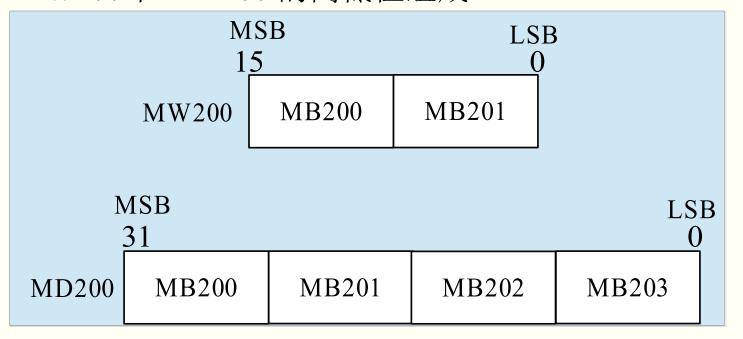



图 8.22 数据块中字及双字的 构成



#### (4)复杂数据类型的使用

复杂数据类型是由其他数据类型组成的数据组,不能将任何常 量用做复杂数据类型的实参。也不能将任何绝对地址作为实参传 送给复杂数据类型。

#### 1)数组(Array)

Array 数据类型表示的是由固定数目的同一数据类型的元素组成的一个集合。一维数组声明的形式为域名: ARRAY[最小索引...最大索引]OF数据类型;如一维数组: SampleValue: ARRAY[1..10] OF REAL,数组声明中的索引数据类型为 INT,其范围为-32768~32767. 这也就反映了数组的最大数目。

|    | blk | 10         |                 |                    |        |    |              |              |                         |
|----|-----|------------|-----------------|--------------------|--------|----|--------------|--------------|-------------------------|
|    |     | 名称         |                 | 数据类型               | 起始值    | 保持 | 可从 HMI/      | 从 H          | 在 HMI                   |
| 1  | 1   | <b>▼</b> 5 | tatic           |                    |        |    |              |              |                         |
| 2  | 1   |            | ' SampleValue   | Array[110] of Real |        |    | $\checkmark$ | <b>~</b>     | $\checkmark$            |
| 3  | 1   |            | SampleValue[1]  | Real               | 2343.6 |    | <b>✓</b>     | ✓            | <b>✓</b>                |
| 4  | 1   |            | SampleValue[2]  | Real               | 35.0   |    | <b>✓</b>     | ✓            | <b>✓</b>                |
| 5  | 1   |            | SampleValue[3]  | Real               | 2780.8 |    | <b>✓</b>     | ✓            | <b>✓</b>                |
| 6  | 1   |            | SampleValue[4]  | Real               | 0.0    |    | <b>✓</b>     | <b>~</b>     | <b>✓</b>                |
| 7  | 1   |            | SampleValue[5]  | Real               | 0.0    |    | <b>✓</b>     | ✓            | ✓                       |
| 8  | 1   |            | SampleValue[6]  | Real               | 0.0    |    | <b>✓</b>     | ✓            | <b>✓</b>                |
| 9  | 1   |            | SampleValue[7]  | Real               | 0.0    |    | <b>✓</b>     | ✓            | <b>✓</b>                |
| 10 | 1   |            | SampleValue[8]  | Real               | 0.0    |    | <b>✓</b>     | ✓            | <b>✓</b>                |
| 11 | 1   |            | SampleValue[9]  | Real               | 0.0    |    | ✓            | ✓            | ✓                       |
| 12 | 1   | -          | SampleValue[10] | Real               | 0.0    |    | ✓            | ✓            | ✓                       |
| 13 | 1   | • •        | TestValue       | Array[-55] of Real |        |    | $\checkmark$ | $\checkmark$ | $\overline{\mathbf{A}}$ |
| 14 | 1   | -          |                 | Real               | 131.9  |    | ✓            | ✓            | ✓                       |
| 15 | €   | -          | TestValue[-4]   | Real               | 0.0    |    | ✓            | <b>~</b>     | ✓                       |
| 16 | €   | -          |                 | Real               | 0.0    |    | <u>~</u>     | <b>~</b>     | <b>✓</b>                |
| 17 | 1   | -          | TestValue[-2]   | Real               | 0.0    |    | ✓            | <b>~</b>     | ✓                       |
| 18 | 1   | -          | TestValue[-1]   | Real               | 0.0    |    | ✓            | ✓            | ✓                       |
| 19 | 1   |            | TestValue[0]    | Real               | 0.0    |    | <b>✓</b>     | ✓            | ✓                       |
| 20 | 1   | -          | TestValue[1]    | Real               | 0.0    |    | ✓            | ✓            | ✓                       |
| 21 | 1   | -          | TestValue[2]    | Real               | 0.0    |    | ✓            | <b>~</b>     | ✓                       |
| 22 | 1   |            | TestValue[3]    | Real               | 0.0    |    | ✓            | ✓            | ✓                       |
| 23 | 1   | -          | TestValue[4]    | Real               | 0.0    |    | ✓            | ✓            | ✓                       |
| 24 | 1   |            | TestValue[5]    | Real               | 0.0    |    | <b>✓</b>     | ✓            | ✓                       |

图 8.23 新建 Array 类型

#### 2) 结构(Struct)

Struct 作为一种复杂的数据类型,表示的是一组由若干相同类型或不同类型的数据构成的集合。 S7-1200 中结构型变量不支持嵌套。

结构元素也可以在定义时进行初始化赋值,初始化值的数据类型必须与结构元素的数据类型相一致,否则系统会发出警告,当然也可在程序中通过 MOVE 指令进行赋值。



|            |            |       | <u> </u>    |                      |      |       |    |              |              |              |
|------------|------------|-------|-------------|----------------------|------|-------|----|--------------|--------------|--------------|
| blk        | 11         |       |             |                      |      |       |    |              |              |              |
|            | 名称         |       |             | 数据类型                 | 偏移里  | 起始值   | 保持 | 可从 HMI/      | 从 H          | 在 HMI        |
| <b>411</b> | <b>▼</b> 5 | tatic |             |                      |      |       |    |              |              |              |
| <b>411</b> |            | Re    | cord        | Struct               | 0.0  |       |    | <b>~</b>     | $\checkmark$ | <b>~</b>     |
| <b>€</b>   |            |       | Number      | Int                  | 0.0  | 10870 |    | $\checkmark$ | $\checkmark$ | <b>~</b>     |
| 1          |            |       | Gender      | Bool                 | 2.0  | true  |    | $\checkmark$ | <b>~</b>     | <b>~</b>     |
| 1          |            |       | Score       | Real                 | 4.0  | 94.5  |    | $\checkmark$ | <b>~</b>     | <b>~</b>     |
| 1          |            | Re    | cords       | Array[110] of Struct | 8.0  |       |    | <b>~</b>     | <b>~</b>     | <b>~</b>     |
| 1          |            | •     | Records[1]  | Struct               | 8.0  |       |    | ✓            | ✓            | ✓            |
| <b>40</b>  |            | •     | speed       | Int                  | 8.0  | 0     |    | <b>✓</b>     | <b>~</b>     | <b>~</b>     |
| €11        |            | •     | temp        | Real                 | 10.0 | 0.0   |    | <b>✓</b>     | $\checkmark$ | $\checkmark$ |
| <b>411</b> |            | •     | size        | Int                  | 14.0 | 0     |    | $\checkmark$ | $\checkmark$ | <b>~</b>     |
| €11        |            | •     | Records[2]  | Struct               | 16.0 |       |    | ✓            | ✓            | ✓            |
| 1          |            | •     | speed       | Int                  | 16.0 | 0     |    | ✓            | ✓            | ✓            |
| €11        |            | •     | temp        | Real                 | 18.0 | 0.0   |    | ✓            | ✓            | ✓            |
| €11        |            | •     | size        | Int                  | 22.0 | 0     |    | ✓            | ✓            | ✓            |
| 1          |            | •     | Records[3]  | Struct               | 24.0 |       |    | ✓            | ✓            | ✓            |
| 1          |            | •     | Records[4]  | Struct               | 32.0 |       |    | ✓            | $\checkmark$ | ~            |
| 1          |            | •     | Records[5]  | Struct               | 40.0 |       |    | ✓            | ~            | ~            |
| €11        |            | •     | Records[6]  | Struct               | 48.0 |       |    | $\checkmark$ | ✓            | ~            |
| €11        |            | •     | Records[7]  | Struct               | 56.0 |       |    | ✓            | ✓            | ~            |
| 400        |            | •     | Records[8]  | Struct               | 64.0 |       |    | <u>~</u>     | $\checkmark$ | ~            |
| 1          |            | •     | Records[9]  | Struct               | 72.0 |       |    | ✓            | ✓            | <b>✓</b>     |
| €11        |            | •     | Records[10] | Struct               | 80.0 |       |    | ✓            | ✓            | ✓            |

图 8.24 新建 Struct 类型

变量

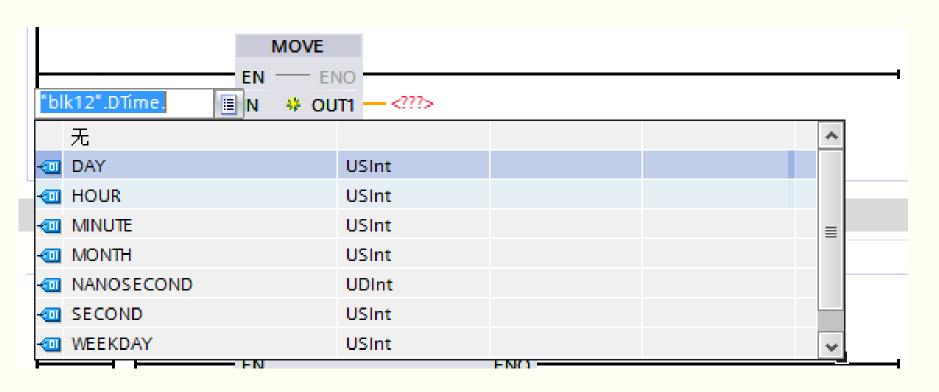
#### 3)字符串(String)

String 数据类型的变量是用来存储字符串的,每个字符串变量的最大长度可由方括号中的关键字指定,如 String[4] 表示串中的字符数最多为 4,如果省略了最大长度信息,则相应的变量长度默认为254。

新建一个全局数据块"blk12",数据块编号为DB8,不选中数据块的"优化的块访问"单选框,这样就可以允许绝对地址访问,可以查看各变量的地址偏移量。

blk12 名称 数据类型 偏移單 起始值 保持 可从 HMI/... 从 H... 在 HMI ... ■ Static V V String 0.0 'How are you' - 100 € Msg1 '1234567890' String[10] 256.0 400 ■ Msq2 V String[20] Msg3 268.0 - 1 Msg4 String[2] - 100 290.0 String[2] Msg5 294.0 • 🖜

4)长格式日期和时间(DTL)


DTL 数据类型表示了一个日期时间值,共 12 个字节。

在全局数据块"blk12"中新建 DTL 型变量 DTime,系统会自动地赋予最小值 DTL#1970-01-01-00:00:00, DTL 型数据长度为 12 个字节,包括年、月、日、星期及时间,每个元素所占存储空间的字节数图 8.26a 所示,其数据格式为: DTL#月-日-周-小时-分

钟一秒一纳秒

| DIKTZ |   |   |   |            |       |                         |    |
|-------|---|---|---|------------|-------|-------------------------|----|
|       |   | 名 | 称 |            | 数据类型  | 起始值                     | 1: |
|       | 1 | • | • | DTime      | DTL   | DTL#1970-01-01-00:00:00 |    |
|       | 1 |   |   | YEAR       | UInt  | 1970                    |    |
|       | 1 |   |   | MONTH      | USInt | 1                       |    |
|       | 1 |   |   | DAY        | USInt | 1                       |    |
|       | 1 |   | • | WEEKDAY    | USInt | 5                       |    |
|       | 1 |   | • | HOUR       | USInt | 0                       |    |
|       | 1 |   | • | MINUTE     | USInt | 0                       |    |
|       | 1 |   |   | SECOND     | USInt | 0                       |    |
|       | 1 |   |   | NANOSECOND | UDInt | 0                       |    |





b ) 图 8.26 新建 DTL 类型变量

# 谢谢聆听