单片机应用技术

项目十

AVR 单片机 USART 串行通信应用

【知识目标】

- > 了解通信基础知识
- ▶掌握异步串行通信协议
- ➤了解 ATmegal6 单片机串行通信接口结构
- 了解与串行通信有关的寄存器的功能

【能力目标】

- ➤ 掌握 ATmega16 单片机的串行接口相关寄存器的 配置方法
- ▶ 掌握 RS—232C 与 TTL 电平转换方法
- ➤ 掌握 ATmega16 单片机的串行接口及相关寄存器的配置方法
- ▶ 掌握简单的单片机串行通信系统程序的编写、调试方法
- ▶ 掌握 PC 机串口调试软件的使用方法

❖一、通信知识概述

■ 在通信领域,有两种数据通信方式:**并行通信、串行通 信**

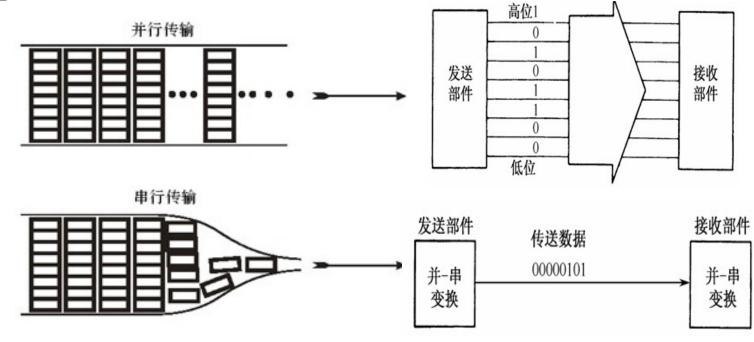


图 10-1 并行、串行通信示意图

- ❖二、串行通讯制式
 - 根据信息的传送方向,串行通讯可以进一步分为:单工、 半双工和全双工三种。

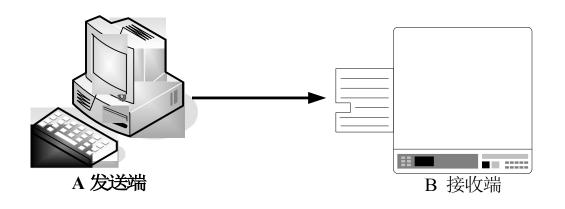


图 10-2 单工方式

- *二、串行通讯制式
 - 根据信息的传送方向,串行通讯可以进一步分为:单工、
 半双工和全双工三种。

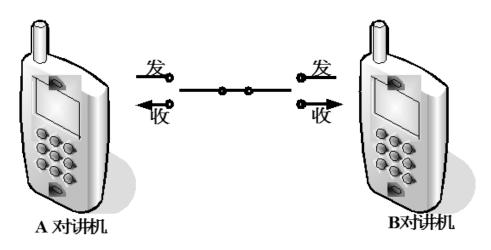


图 10-3 半双工方式

- *二、串行通讯制式
 - 根据信息的传送方向,串行通讯可以进一步分为:单工、 半双工和全双工三种。

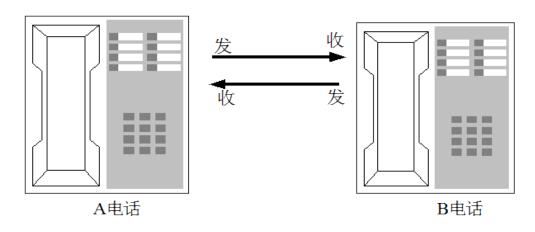


图 10-4 全双工方式

- *三、串行数据传输的分类
 - 按照串行数据的时钟控制方式,串行通信又可分为同步通信和异步通信两种。

同步通信 ---Synchronous Communication : 发送器和接收器由同一个时钟源控制。

图 10-5 同步通信的字符帧格式

*三、串行数据传输的分类

按照串行数据的时钟控制方式,串行通信又可分为同步通信和异步通信两种。

异步通信 --- Asynchronous Communication 。

1)字符帧 (Character Frame) 字符帧也叫数据帧, 由起始位、数据位、 奇偶校验位和停止位 等4部分组成,如图 1.6 所示。

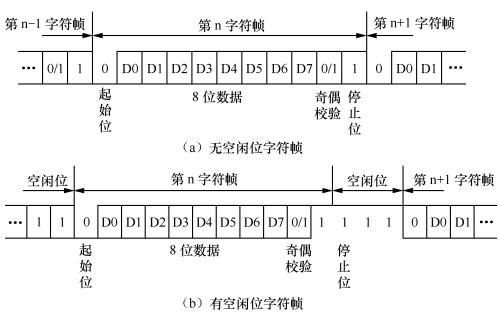


图 10-6 异步通信的字符帧格式

❖三、串行数据传输的分类

按照串行数据的时钟控制方式,串行通信又可分为同步通信和异步通信两种。

异步通信 --- Asynchronous Communication 。

1)字符帧 (Character Frame) 字符帧也叫数据帧, 由起始位、数据位、 奇偶校验位和停止位 等4部分组成,如图 1.6 所示。

❖三、串行数据传输的分类

按照串行数据的时钟控制方式,串行通信又可分为同步通信和异步通信两种。

异步通信 --- Asynchronous Communication 。

(2) **波特率**(Baud Rate)

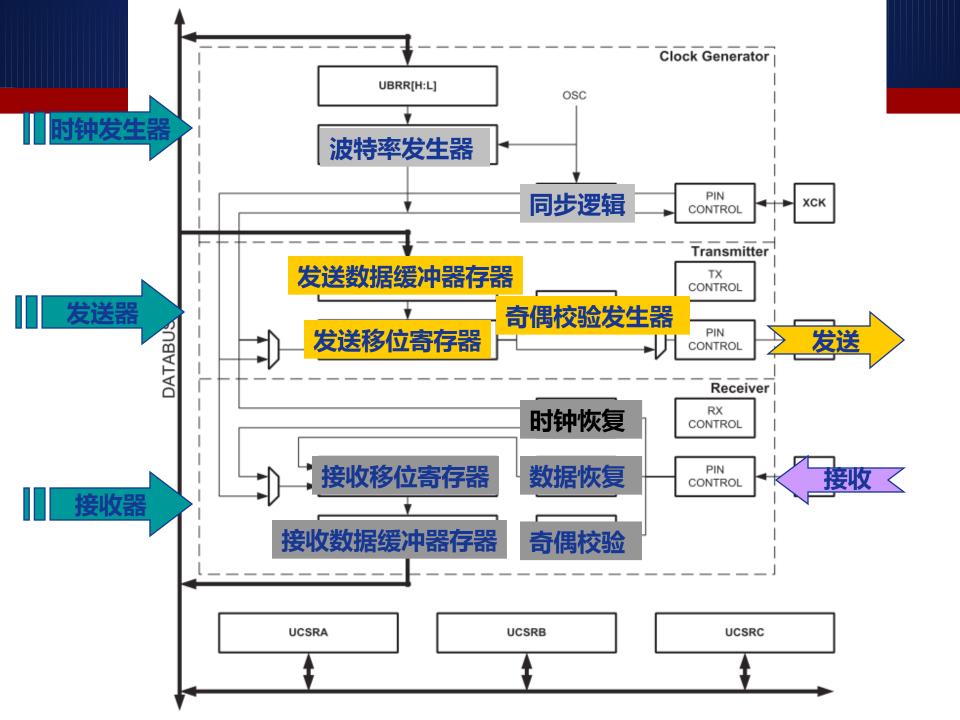
异步通信的另一个重要指标为波特率,它是一个衡量符号传输速率的参数,表示每秒钟传送的符号的个数。假如波特率参数设定为 9600bps ,即每秒传输 9600bit 数据。

异步通信的优点是不需要传送同步时钟,字符帧长度不受限制,故设备简单;缺点是字符帧中因包含始位和停止位而降低了有效数据的传输速率。

❖三、串行数据传输的分类

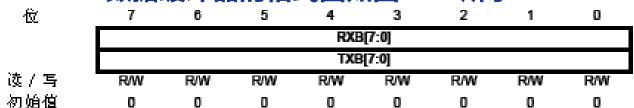
按照串行数据的时钟控制方式,串行通信又可分为同步通信和异步通信两种。

异步通信 --- Asynchronous Communication 。


(2) **波特率**(Baud Rate)

异步通信的另一个重要指标为波特率,它是一个衡量符号传输速率的参数,表示每秒钟传送的符号的个数。假如波特率参数设定为 9600bps ,即每秒传输 9600bit 数据。

异步通信的优点是不需要传送同步时钟,字符帧长度不受限制,故设备简单;缺点是字符帧中因包含始位和停止位而降低了有效数据的传输速率。


❖四、ATmega16 单片机的串行口及相关寄存器

与 ATmega16 单片机串行口通信有关的特殊功能寄存器有数据缓冲器 UDR ,控制和状态寄存器 UCSRA、 UCSRB、 UCSRC ,波特率寄存器 UBRRL、 UBRRH。下面对它们分别作简单的介绍。

1)数据缓冲器 UDR

UDR 数据缓冲器的格式图如图 1.7 所示:

ATmega16 单片机 USART 发送数据缓冲寄存器和 USART 接收数据缓冲寄存器共享相同的 I/O 地址,称为 USART 数据寄存器或 UDR。将数据写入 UDR 时实际操作的是发送数据缓冲器存器 (TXB),读 UDR 时实际返回的是接收数据缓冲寄存器 (RXB)的内容。

只有当 UCSRA 寄存器的 UDRE 标志置位后才可以对发送缓冲器进行写操作。如果 UDRE 没有置位,那么写入UDR 的数据会被 USART 发送器忽略。当数据写入发送缓冲器后,若移位寄存器为空,发送器将把数据加载到发送移位寄存器。然后数据串行地从 TxD 引脚输出。

- 2)控制状态寄存器 UCSRA、 UCSRB、 UCSRC
- (1)控制状态寄存器 UCSRA

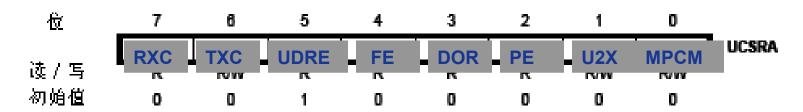
饭	7	- 6	5	4	3	2	1	0	_
	RXC	TXC	UDRE	FE	DOR	PE	U2X	MPCM	UCSRA
读/写	R	R/W	R	R	R	R	R/W	R/W	-
初始值	0	0	1	0	0	0	0	0	

RXC: USART 接收结束

接收缓冲器中有未读出的数据时 RXC 置位,否则清零。接收器禁止时,接收缓冲器被刷新,导致 RXC 清零。RXC 标志可用来产生接收结束中断(见对 RXCIE 位的描述)。

TXC: USART 发送结束

发送移位缓冲器中的数据被送出,且当发送缓冲器(UDR)为空时 TXC 置位。执行发送结束中断时 TXC 标志自动清零,也可以通过写 1 进行清除操作。 TXC 标志可用来产生发送结束中断(见对 TXCIE 位的描述)。


敓	7	6	5	4	3	2	1	0	_
	RXC	TXC	UDRE	FE	DOR	PE	U2X	MPCM	UCSRA
读/写	R	- HVW	_ к	R	- K	R	R/W	R/W	
初始值	0	0	1	0	0	0	0	0	

FE: 帧错误

如果接收缓冲器接收到的下一个字符有帧错误,即接收缓冲器中的下一个字符的第一个停止位为 0 , 那么 FE置位。这一位一直有效直到接收缓冲器 (UDR) 被读取。当接收到的停止位为 1 时 , FE 标志为 0 。对 UCSRA进行写入时 , 这一位要写 0 。

DOR: 数据溢出

数据溢出时 DOR 置位。当接收缓冲器满(包含了两个数据),接收移位寄存器又有数据,若此时检测到一个新的起始位,数据溢出就产生了。这一位一直有效直到接收缓冲器 (UDR) 被读取。对 UCSRA 进行写入时,这一位要写 0。

PE: 奇偶校验错误

当奇偶校验使能 (UPM1 = 1) , **且接收缓冲器中所接收到的下一个字符有奇偶校验错误时 UPE 置位**。这一位一直有效直到接收缓冲器 (UDR) 被读取。对 UCSRA 进行写入时,这一位要写 0。

U2X: 倍速发送

这一位仅对异步操作有影响。使用同步操作时将此位 清零。此位置 1 可将波特率分频因子从 16 降到 8 , 从而 有效的将异步通信模式的传输速率加倍。

MPCM: 多处理器通信模式

设置此位将启动多处理器通信模式。 MPCM 置位 后, USART 接收器接收到的那些不包含地址信息的输入 帧都将被忽略。发送器不受 MPCM 设置的影响。

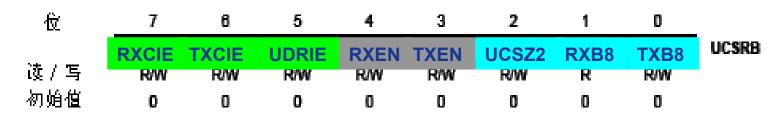
(2)控制状态寄存器 UCSRB 格式

Ŕ	7	6	5	4	3	2	1	0	_
	RXCIE	TXCIE	UDRIE	RXEN	TXEN	UCSZ2	RXB8	TXB8	UCSRB
读/写	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	1
初始值	0	0	0	0	0	0	0	0	

RXCIE: 接收结束中断使能 *** **向量号:**

置位后使能 RXC 中断。当 RXCIE 为 1 , 全局中断标志位 SREG 置位 , UCSRA 寄存器的 RXC 亦为 1 时可以产生 USART 接收结束中断。

TXCIE: 发送结束中断使能 *** 向量号:


置位后使能 TXC 中断。当 TXCIE 为 1 , 全局中断标志位 SREG 置位, UCSRA 寄存器的 TXC 亦为 1 时可以产生USART 发送结束中断。

躗	7	6	5	4	3	2	1	0	_
	RXCIE	TXCIE	UDRIE	RXEN	TXEN	UCSZ2	RXB8	TXB8	UCSRB
读/写	R/W	R/W	R/W	R/W	RW	R/W	R	R/W	
初始值	0	0	0	0	0	0	0	0	

UDRIE: USART 数据寄存器空中断使能.置位后使能UDRE 中断。当UDRIE 为 1 ,全局中断标志位 SREG 置位,UCSRA 寄存器的 UDRE 亦为 1 时可以产生 USART数据寄存器空中断。*** 向量号:

RXEN:接收使能.置位后将启动 USART 接收器。RxD 引脚的通用端口功能被 USART 功能所取代。禁止接收器将刷新接收缓冲器,并使 FE、 DOR 及 PE 标志无效。

TXEN: 发送使能置. 位后将启动将启动 USART 发送器。TxD 引脚的通用端口功能被 USART 功能所取代。TXEN 清零后,只有等到所有的数据发送完成后发送器才能够真正禁止,即发送移位寄存器与发送缓冲寄存器中没有要传送的数据。发送器禁止后,TxD 引脚恢复其通

UCSZ2: 字符长度

UCSZ2 与 UCSRC 寄存器的 UCSZ1:0 结合在一起可以设置数据帧所包含的数据位数(字符长度)。

RXB8: 接收数据位 8

对 9 位串行帧进行操作时 , RXB8 是第 9 个数据 位。读取 UDR 包含的低位数据之前首先要读取 RXB8。

TXB8: 发送数据位 8

对 9 位串行帧进行操作时 , TXB8 是第 9 个数据位。写 UDR 之前首先要对它进行写操作。

(3)控制状态寄存器 UCSRC

伩	7	6	5	4	3	2	1	0	
	URSEL	UMSEL	UPM1	UPM0	USBS	UC\$Z1	UC\$Z0	UCPOL	UCSRC
读/写	R/W	RW	R/W	RW	R/W	R∕W	R/W	R/W	l
初始值	1	0	0	0	0	1	1	0	

在 ATmega16 单片机中, UCSRC 寄存器与 UBRRH 寄存器共用相同的 I/O 地址。对控制寄存器 UCSRC 的各位介绍如下:

URSEL: 寄存器选择

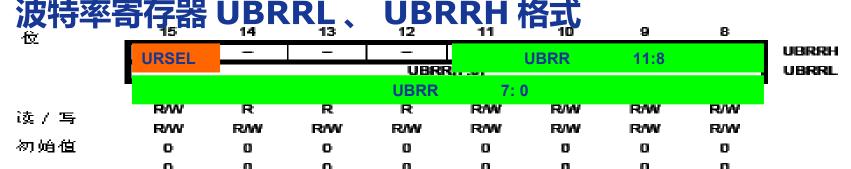
通过该位选择访问 UCSRC 寄存器或 UBRRH 寄存器。当读 UCSRC 时,该位为1;当写 UCSRC 时, URSEL 为1。

UMSEL: USART 模式选择

当 UMSEL 位为 0 时,串行口工作于异步操作模式;当 UMSEL 位为 1 时,串行口工作于同步操作模式。

傡	7	6	5	4	3	2	1	0	
	URSEL U	MSEL	UPM1	UPM0	USBS	UC\$Z1	UCSZO	UCPOL	UCSRC
读/写	R/W	RW	R/W	R/W	R/W	R/W	RW	R/W	
初始值	1 (-	0	0,	0	0	1,	11	ر جا في ر	
UPM1	:0: 奇偶	校验	模式.	这两位	立设置	奇偶	校验的]模式	件使能
奇偶核	这验。如 身		它了奇	偶校验	佥,那	么在	支送数	据,发	文送器
都会自			_	校验位		每一	个接收	到的数	效据 ,
	器都会产生		片偶值						ムテトレ
			J J	- ' ' (自无,智	5位进行	J 异 或 运	异,然后	
较。如	口果不匹酉	记,进	『 么就		偶校验:	:结果再	与 0 异	或运算。	
位。 A	\Tmgega	16 身	单片机	串	<mark>奇校验:</mark> :	:结果再	写 1 异	或运算	定置如
表 1.1	FF-⊎PM1•		UPM0	奇偶模	式				
	771750		0	禁止					
	0		1	保					
	1		0						
	1		1	奇校验					

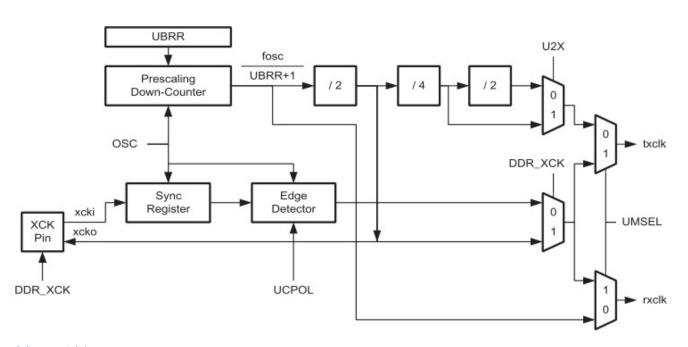
❖ USBS: 停止位选择通过这一位可以设置停止位的位数。接收器忽略这一位的设置。当 USBS 位为 0 时,停止位位数为 1 · 当 USBS 位为 1 时,停止位位数为 2


位	7	6	5	4	3	2	1	0	
	URSEL	UMSEL	UPM1	UPM0	USBS	UCSZ1	UCSZ0	UCPOL	UCSRC
读/写	R/W	R/W	R/W	R/W	RW	R/W	R/W	R/W	
初始值	1	0	0	0	0	1	1	0	

UCSZ1:0:字符长度 .UCSZ1:0 与 UCSRB 寄存器的 UCSZ2 结合在一起可以设置数据帧包含的数据位数 (字符长度)。其具体设置如表所示:

UC\$Z2	UCSZ1	UCSZ0	字符长度
0	D	0	5 位
0	D	1	6 位
0	1	0	7位
0	1	1	8 位
1	D	0	保留
1	D	1	保留
1	1	0	保留
1	1	1	9 位

❖ UCPOL: 时钟极性 . 这一位仅用于同步工作模式。使用异步模式时,将这一位清零。 UCPOL 设置了输出数据的改变和输入数据采样,以及同步时钟 XCK 之间的关系。


3)波特率设置寄存器

URSEL: 寄存器选择通过该位选择访问 UCSRC 寄存器或 UBRRH 寄存器。当读 UBRRH 时,该位为 0 ;当写 UBRRH 时, URSEL 为 0。

- ❖ Bit 14:12 保留位 这些位是为以后的使用而保留的。为 了与以后的器件兼容,写 UBRRH 时将这些位清零。
- ❖ Bit 11:0 UBRR11:0: USART 波特率寄存器. 这个 12 位的寄存器包含了 USART 的波特率信息。其中 UBRRH包含了 USART 波特率高 4 位, UBRRL 包含了低 8 位。波特率的改变将造成正在进行的数据传输受到破坏。写 UBRRL 将立即更新波特率分频器。

4)时钟的产生-波特率发生器

- ❖ 信号说明:
- ❖ txclk 发送器时钟 (内部信号) rxclk 接收器基础时钟 (内部信号)
- ❖ xcki XCK 引脚输入 (内部信号),用于同步从机操作;
- ❖ xcko 输出到 XCK 引脚的时钟 (内部信号),用于同步主机操作;
- ❖ foscXTAL 频率 (系统时钟)

❖ 图 1.13 给出了计算波特率 (位/秒)以及计算每一种使用内部时钟源工作模式的 UBRR 值的公

式

使用模式	波特率的计算公式 (1)	UBRR 值的计算公式
异步正常模式 (U2X = 0)	$BAUD = \frac{f_{OSC}}{16(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{16BAUD} - 1$
异步倍速模式 (U2X = 1)	$BAUD = \frac{f_{OSC}}{8(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{8BAUD} - 1$
同步主机模式	$BAUD = \frac{f_{OSC}}{2(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{2BAUD} - 1$

说明

BAUD 波特率 (使用单位 bit/s)

fOSC 系统时钟频率

UBRR UBRRH 与 UBRRL 的数值(0-4095)

※一、任务要求

■ 利用 ATmega16 单片机内部的 USART 串行通信功能,实现双单片机系统之间的数据通信。通过系统 A 可以控制系统 B 的秒表启停,如果系统 B 的秒表超过 60s,系统 B 发送给系统报警指示信号,系统 A 发出灯光指示。

二、硬件设计

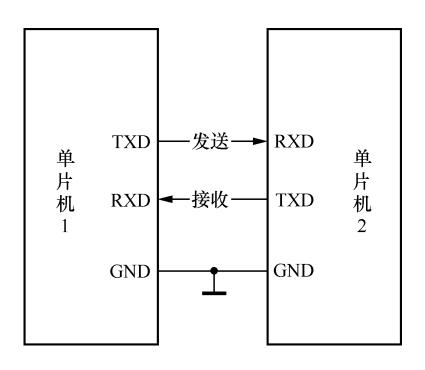


图 10-8 硬件连线示意图

三、程序设计

系统 A、B通信程序的设计思路都是采用中断方式进行程序设计的,首先对系统 A、B串行通信模块 USART 相应寄存器进行设置,通过寄存器 UBRRL、UBRRH 设置波特率为9600。

在系统 A 中定义全局变量 start (0x00 表示停止,0x01 表示启动),通过外部中断 0 进行启动、停止的切换,进入一次外部中断 0 切换一次,并通过把 start 赋值给数据缓冲器 UD R,实现系统 A 给系统 B 自动发送启动 / 停止指令。

在系统B中,设置串口数据接收中断函数功能,系统B 接收完数据后自动进入中断程序,读取 UDR 的数值并判断是启 动还是停止指令。

四、项目实施

- 1. 根据元器件清单选择合适的元器件。
- 2. 根据硬件设计原理图,在万能电路板进行元器件布局,并进行系统 A、B双系统的焊接工作。
 - 3. 焊接完成后,重复进行线路检查,防止短路、虚接现象。
- 4. 用 AVR Studio 软件分别创建项目 A 、 B ,输入源代码并生成各自的*.hex 文件。
- 5. 用线缆将焊接好的系统 A、 B 双系统的串行接口进行硬件连接 (TXD、 RXD 交叉连接)。
- 6. 在确认硬件电路正确的前提下,通过 JTAG 仿真器进行程序的下载与硬件在线调试。

※ 一、任务要求

■ 利用 ATmega16 单片机内部的 USART 串行通信功能,实现对 3 个单片机系统之间的数据通信。通过主控制系统 A 可以控制从机系统 B、 C 秒表的启停,并在主控系统 A 上显示从机系统是否启动成功。

二、硬件设计

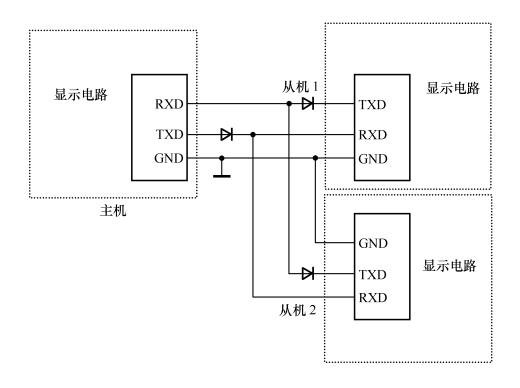


图 10-9 硬件连线示意图

三、程序设计

系统A、B、C通信程序设计思路都是采用中断方式进行程序设计的,首先对系统A、B、C串行通信模块USART相应寄存器进行设置,通过寄存器UBRRL、UBRRH设置波特率为9600。同时在多机通信过程中需要特别注意多处理器通信模式的设定。

置位 UCSRA 的多处理器通信模式位(MPCM)可以对USART 接收器接收到的数据帧进行过滤。那些没有地址信息的帧将被忽略,也不会存入接收缓冲器。如果接收器所接收的数据帧长度为 9 位,那么由第 9 位(RXB8)来确定是数据还是地址信息。如果确定帧类型的位(第 1 个停止位或第 9 个数据位)为"1",那么这是地址帧,否则为数据帧。

三、程序设计

下面即为在多处理器通信模式下进行数据交换的步骤。

- ① 所有从处理器都工作在多处理器通信模式 (UCSRA 寄存器的 MPCM 置位)。
- ② 主处理器发送地址帧后,所有从处理器都会接收并读取此帧。从处理器 UCSRA 寄存器的 RXC 正常置位。
- ③ 每一个从处理器都会读取 UDR 寄存器的内容,以确定自己是否被选中。如果选中,就清零 UCSRA 的 MPCM 位,否则它将等待下一个地址字节的到来,并保持 MPCM 为"1"。
- ④ 被寻址的从处理器将接收所有的数据帧,直到收到一个新的地址帧。而那些保持 MPCM 位为"1"的从处理器将忽略这些数据。
- ⑤ 被寻址的处理器接收到最后一个数据帧后,它将置位 MPC M,并等待主处理器发送下一个地址帧。然后重复进行第 2 步之后的步骤。

四、项目实施

- 1. 根据元器件清单选择合适的元器件。
- 2. 根据硬件设计原理图,在万能电路板进行元器件布局,并进行系统A、B、C三系统的焊接工作。
- 3. 焊接完成后,重复进行线路检查,防止短路、虚接现象。
- 4.用 AVR Studio 软件分别创建项目 A、 B、 C,输入源代码并生成各自的 *.hex 文件。
- 5. 用线缆将焊接好的系统 A、 B、 C系统的串行接口进行硬件连接。
- 6. 在确认硬件电路正确的前提下,通过 JTAG 仿真器进行程序的下载与硬件在线调试。

【任务4】 PC 机与单片机串口通信

※ 一、任务要求

利用 ATmega16 单片机内部的 USART 串行通信功能,实现对单片机系统与 PC 机之间的数据通信。单片机接收 PC 机传输过来的数据,将接收到的数据通过小灯显示出来。

二、硬件设计

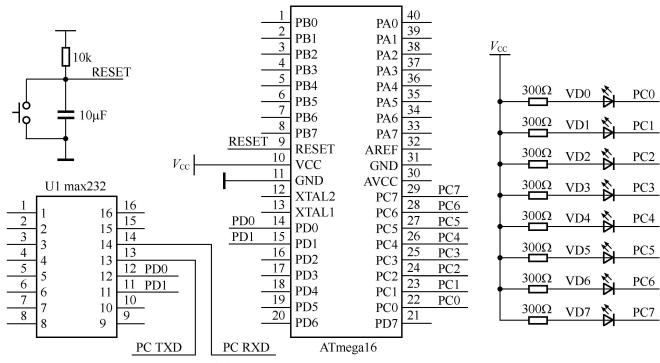


图 10-10 单片机与 PC 机之间的异步串行 通信电路原理图

三、程序设计

1. RS-232C 异步串行通信接口的概述

RS-232C 是使用最早、应用最多的一种异步串行通信总线标准。 RS-232 主要用来定义计算机系统的一些数据终端设备 (DTE) 和数据电路终端设备(DCE) 之间的电器性能。

RS-232C 串行接口总线适用于:设备之间的通信距离不大于 15m,传输速率最大为 20kbit/s。

三、程序设计

2. RS-232C 异步串行通信信息格式标准

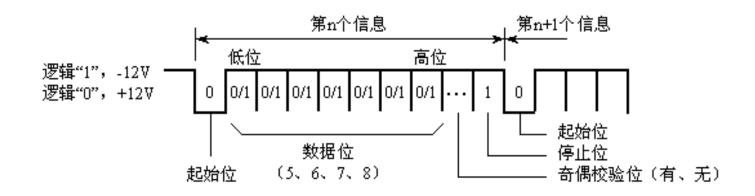


图 10-11 RS-232C 信息格式

三、程序设计

2. RS-232C 异步串行通信信息格式标准

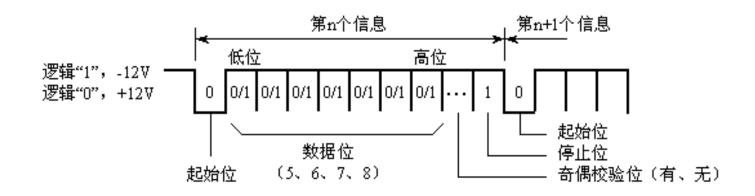


图 10-11 RS-232C 信息格式

三、程序设计

3. RS-232C 总线规定

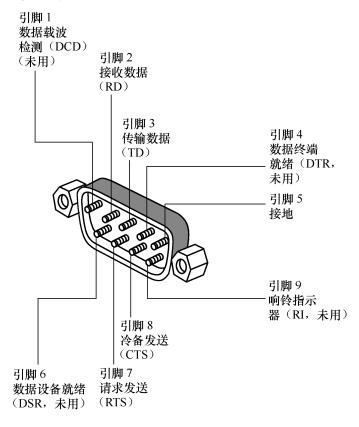


图 10-12 9 芯插头座引脚图

三、程序设计

4. RS-232C 异步串行通信电平转换器

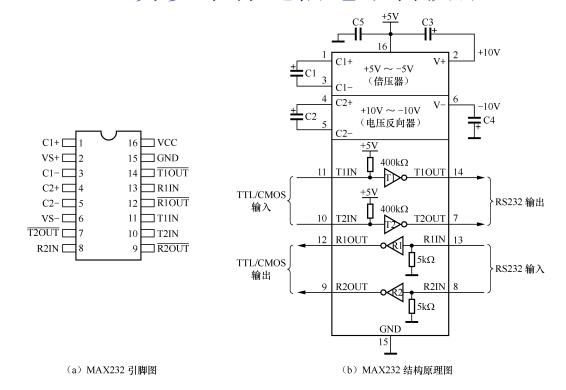
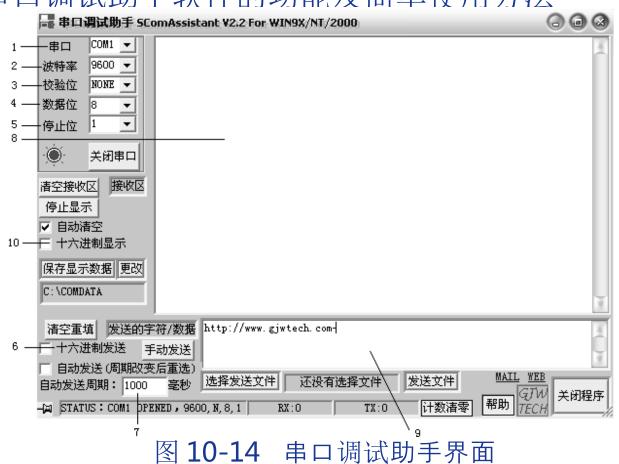



图 10-13 MAX232 引脚图及结构原理图

三、程序设计

5. 串口调试助手软件的功能及简单使用方法

三、程序设计

6. 程序流程图

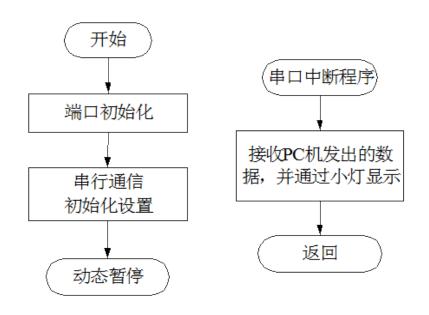


图 10-15 单片机与 PC 机之间的异步串行 通信程序流程图

四、项目实施

- 1. 根据元器件清单选择合适的元器件。
- 2. 根据硬件设计原理图,在万能电路板进行元器件布局,并进行系统的焊接工作。
- 3. 焊接完成后,重复进行线路检查,防止短路、虚接现象。
- 4. 用 AVR Studio 软件分别创建项目,输入源代码并生成*.he x 文件。
- 5. 用串行通信线将焊接好的系统与 PC 机的串行接口进行硬件连接。
- 6. 在确认硬件电路正确的前提下,通过 JTAG 仿真器进行程序的下载与硬件在线调试。
- 7. 打开串行助手软件, PC 与单片机进行串行通信调试。